PoolClock.elf: file format elf32-avr Sections: Idx Name Size VMA LMA File off Algn 0 .data 0000000e 00800100 000002de 00000372 2**0 CONTENTS, ALLOC, LOAD, DATA 1 .text 000002de 00000000 00000000 00000094 2**1 CONTENTS, ALLOC, LOAD, READONLY, CODE 2 .bss 00000006 0080010e 0080010e 00000380 2**0 ALLOC 3 .comment 00000030 00000000 00000000 00000380 2**0 CONTENTS, READONLY 4 .note.gnu.avr.deviceinfo 00000040 00000000 00000000 000003b0 2**2 CONTENTS, READONLY 5 .debug_aranges 00000048 00000000 00000000 000003f0 2**0 CONTENTS, READONLY, DEBUGGING 6 .debug_info 00000bbe 00000000 00000000 00000438 2**0 CONTENTS, READONLY, DEBUGGING 7 .debug_abbrev 00000784 00000000 00000000 00000ff6 2**0 CONTENTS, READONLY, DEBUGGING 8 .debug_line 00000507 00000000 00000000 0000177a 2**0 CONTENTS, READONLY, DEBUGGING 9 .debug_frame 00000090 00000000 00000000 00001c84 2**2 CONTENTS, READONLY, DEBUGGING 10 .debug_str 00000487 00000000 00000000 00001d14 2**0 CONTENTS, READONLY, DEBUGGING 11 .debug_loc 00000634 00000000 00000000 0000219b 2**0 CONTENTS, READONLY, DEBUGGING 12 .debug_ranges 00000098 00000000 00000000 000027cf 2**0 CONTENTS, READONLY, DEBUGGING Disassembly of section .text: 00000000 <__vectors>: 0: 19 c0 rjmp .+50 ; 0x34 <__ctors_end> 2: 33 c0 rjmp .+102 ; 0x6a <__bad_interrupt> 4: 32 c0 rjmp .+100 ; 0x6a <__bad_interrupt> 6: 31 c0 rjmp .+98 ; 0x6a <__bad_interrupt> 8: 30 c0 rjmp .+96 ; 0x6a <__bad_interrupt> a: 2f c0 rjmp .+94 ; 0x6a <__bad_interrupt> c: 2e c0 rjmp .+92 ; 0x6a <__bad_interrupt> e: 2d c0 rjmp .+90 ; 0x6a <__bad_interrupt> 10: 2c c0 rjmp .+88 ; 0x6a <__bad_interrupt> 12: 2b c0 rjmp .+86 ; 0x6a <__bad_interrupt> 14: 2a c0 rjmp .+84 ; 0x6a <__bad_interrupt> 16: 29 c0 rjmp .+82 ; 0x6a <__bad_interrupt> 18: 28 c0 rjmp .+80 ; 0x6a <__bad_interrupt> 1a: 27 c0 rjmp .+78 ; 0x6a <__bad_interrupt> 1c: 26 c0 rjmp .+76 ; 0x6a <__bad_interrupt> 1e: 25 c0 rjmp .+74 ; 0x6a <__bad_interrupt> 20: 24 c0 rjmp .+72 ; 0x6a <__bad_interrupt> 22: 23 c0 rjmp .+70 ; 0x6a <__bad_interrupt> 24: 22 c0 rjmp .+68 ; 0x6a <__bad_interrupt> 26: 21 c0 rjmp .+66 ; 0x6a <__bad_interrupt> 28: 20 c0 rjmp .+64 ; 0x6a <__bad_interrupt> 2a: 1f c0 rjmp .+62 ; 0x6a <__bad_interrupt> 2c: 1e c0 rjmp .+60 ; 0x6a <__bad_interrupt> 2e: 1d c0 rjmp .+58 ; 0x6a <__bad_interrupt> 30: 1c c0 rjmp .+56 ; 0x6a <__bad_interrupt> 32: 1b c0 rjmp .+54 ; 0x6a <__bad_interrupt> 00000034 <__ctors_end>: 34: 11 24 eor r1, r1 36: 1f be out 0x3f, r1 ; 63 38: cf ef ldi r28, 0xFF ; 255 3a: d4 e0 ldi r29, 0x04 ; 4 3c: de bf out 0x3e, r29 ; 62 3e: cd bf out 0x3d, r28 ; 61 00000040 <__do_copy_data>: 40: 11 e0 ldi r17, 0x01 ; 1 42: a0 e0 ldi r26, 0x00 ; 0 44: b1 e0 ldi r27, 0x01 ; 1 46: ee ed ldi r30, 0xDE ; 222 48: f2 e0 ldi r31, 0x02 ; 2 4a: 02 c0 rjmp .+4 ; 0x50 <__do_copy_data+0x10> 4c: 05 90 lpm r0, Z+ 4e: 0d 92 st X+, r0 50: ae 30 cpi r26, 0x0E ; 14 52: b1 07 cpc r27, r17 54: d9 f7 brne .-10 ; 0x4c <__do_copy_data+0xc> 00000056 <__do_clear_bss>: 56: 21 e0 ldi r18, 0x01 ; 1 58: ae e0 ldi r26, 0x0E ; 14 5a: b1 e0 ldi r27, 0x01 ; 1 5c: 01 c0 rjmp .+2 ; 0x60 <.do_clear_bss_start> 0000005e <.do_clear_bss_loop>: 5e: 1d 92 st X+, r1 00000060 <.do_clear_bss_start>: 60: a4 31 cpi r26, 0x14 ; 20 62: b2 07 cpc r27, r18 64: e1 f7 brne .-8 ; 0x5e <.do_clear_bss_loop> 66: e0 d0 rcall .+448 ; 0x228
68: 38 c1 rjmp .+624 ; 0x2da <_exit> 0000006a <__bad_interrupt>: 6a: ca cf rjmp .-108 ; 0x0 <__vectors> 0000006c : } g_u8CountDecs = 0U; //reset decrement counter } g_u8Tens = g_u8WaterTemperature / 10U; g_u8Ones = g_u8WaterTemperature - (g_u8Tens * 10U); 6c: 8f ef ldi r24, 0xFF ; 255 6e: 8a b9 out 0x0a, r24 ; 10 70: 87 e0 ldi r24, 0x07 ; 7 72: 84 b9 out 0x04, r24 ; 4 74: 3b 98 cbi 0x07, 3 ; 7 76: 43 98 cbi 0x08, 3 ; 8 78: 2f ef ldi r18, 0xFF ; 255 7a: 81 e1 ldi r24, 0x11 ; 17 7c: 9a e7 ldi r25, 0x7A ; 122 7e: 21 50 subi r18, 0x01 ; 1 80: 80 40 sbci r24, 0x00 ; 0 82: 90 40 sbci r25, 0x00 ; 0 84: e1 f7 brne .-8 ; 0x7e 86: 00 c0 rjmp .+0 ; 0x88 88: 00 00 nop 8a: 08 95 ret 0000008c : /************************************************************************/ /* */ /************************************************************************/ void vShow( void ) { PORTD = 0U; 8c: 1b b8 out 0x0b, r1 ; 11 PORTB = SELECT_DIGIT(DIGIT_TENS); 8e: 84 e0 ldi r24, 0x04 ; 4 90: 85 b9 out 0x05, r24 ; 5 #else //round up by default __ticks_dc = (uint32_t)(ceil(fabs(__tmp))); #endif __builtin_avr_delay_cycles(__ticks_dc); 92: 86 e0 ldi r24, 0x06 ; 6 94: 8a 95 dec r24 96: f1 f7 brne .-4 ; 0x94 98: 00 c0 rjmp .+0 ; 0x9a _delay_us(1); PORTD = g_au8Numbers[g_u8Tens]; 9a: e0 91 13 01 lds r30, 0x0113 ; 0x800113 9e: f0 e0 ldi r31, 0x00 ; 0 a0: e0 50 subi r30, 0x00 ; 0 a2: ff 4f sbci r31, 0xFF ; 255 a4: 80 81 ld r24, Z a6: 8b b9 out 0x0b, r24 ; 11 #else //round up by default __ticks_dc = (uint32_t)(ceil(fabs(__tmp))); #endif __builtin_avr_delay_cycles(__ticks_dc); a8: 87 e8 ldi r24, 0x87 ; 135 aa: 93 e1 ldi r25, 0x13 ; 19 ac: 01 97 sbiw r24, 0x01 ; 1 ae: f1 f7 brne .-4 ; 0xac b0: 00 c0 rjmp .+0 ; 0xb2 b2: 00 00 nop _delay_ms(MULTIPLEX_DELAY_MS); PORTD = 0U; b4: 1b b8 out 0x0b, r1 ; 11 PORTB = SELECT_DIGIT(DIGIT_ONES); b6: 82 e0 ldi r24, 0x02 ; 2 b8: 85 b9 out 0x05, r24 ; 5 #else //round up by default __ticks_dc = (uint32_t)(ceil(fabs(__tmp))); #endif __builtin_avr_delay_cycles(__ticks_dc); ba: 96 e0 ldi r25, 0x06 ; 6 bc: 9a 95 dec r25 be: f1 f7 brne .-4 ; 0xbc c0: 00 c0 rjmp .+0 ; 0xc2 _delay_us(1); PORTD = g_au8Numbers[g_u8Ones]; c2: e0 91 12 01 lds r30, 0x0112 ; 0x800112 c6: f0 e0 ldi r31, 0x00 ; 0 c8: e0 50 subi r30, 0x00 ; 0 ca: ff 4f sbci r31, 0xFF ; 255 cc: 80 81 ld r24, Z ce: 8b b9 out 0x0b, r24 ; 11 #else //round up by default __ticks_dc = (uint32_t)(ceil(fabs(__tmp))); #endif __builtin_avr_delay_cycles(__ticks_dc); d0: 87 e8 ldi r24, 0x87 ; 135 d2: 93 e1 ldi r25, 0x13 ; 19 d4: 01 97 sbiw r24, 0x01 ; 1 d6: f1 f7 brne .-4 ; 0xd4 d8: 00 c0 rjmp .+0 ; 0xda da: 00 00 nop _delay_ms(MULTIPLEX_DELAY_MS); PORTD = 0U; dc: 1b b8 out 0x0b, r1 ; 11 PORTB = SELECT_DIGIT(DIGIT_UNIT); de: 81 e0 ldi r24, 0x01 ; 1 e0: 85 b9 out 0x05, r24 ; 5 #else //round up by default __ticks_dc = (uint32_t)(ceil(fabs(__tmp))); #endif __builtin_avr_delay_cycles(__ticks_dc); e2: 96 e0 ldi r25, 0x06 ; 6 e4: 9a 95 dec r25 e6: f1 f7 brne .-4 ; 0xe4 e8: 00 c0 rjmp .+0 ; 0xea _delay_us(1); PORTD = DEGREE_CELCIUS; ea: 8d ea ldi r24, 0xAD ; 173 ec: 8b b9 out 0x0b, r24 ; 11 #else //round up by default __ticks_dc = (uint32_t)(ceil(fabs(__tmp))); #endif __builtin_avr_delay_cycles(__ticks_dc); ee: 87 e8 ldi r24, 0x87 ; 135 f0: 93 e1 ldi r25, 0x13 ; 19 f2: 01 97 sbiw r24, 0x01 ; 1 f4: f1 f7 brne .-4 ; 0xf2 f6: 00 c0 rjmp .+0 ; 0xf8 f8: 00 00 nop fa: 08 95 ret 000000fc : /************************************************************************/ /* */ /************************************************************************/ uint8_t u8ReadSensor( void ) { fc: 0f 93 push r16 fe: 1f 93 push r17 100: cf 93 push r28 102: df 93 push r29 104: 00 d0 rcall .+0 ; 0x106 106: 00 d0 rcall .+0 ; 0x108 108: 1f 92 push r1 10a: cd b7 in r28, 0x3d ; 61 10c: de b7 in r29, 0x3e ; 62 uint8_t timeout = 200; SENSOR_sda_in; 10e: 3b 98 cbi 0x07, 3 ; 7 // Bus master has released time min: 20us, typ: 30us, max: 200us while ( SENSOR_is_hi ) 110: 89 ec ldi r24, 0xC9 ; 201 112: 07 c0 rjmp .+14 ; 0x122 #else //round up by default __ticks_dc = (uint32_t)(ceil(fabs(__tmp))); #endif __builtin_avr_delay_cycles(__ticks_dc); 114: 36 e0 ldi r19, 0x06 ; 6 116: 3a 95 dec r19 118: f1 f7 brne .-4 ; 0x116 11a: 00 c0 rjmp .+0 ; 0x11c 11c: 81 50 subi r24, 0x01 ; 1 { _delay_us(1); if ( !timeout-- ) 11e: 09 f4 brne .+2 ; 0x122 120: 6e c0 rjmp .+220 ; 0x1fe uint8_t timeout = 200; SENSOR_sda_in; // Bus master has released time min: 20us, typ: 30us, max: 200us while ( SENSOR_is_hi ) 122: 33 99 sbic 0x06, 3 ; 6 124: f7 cf rjmp .-18 ; 0x114 126: 86 e5 ldi r24, 0x56 ; 86 128: 07 c0 rjmp .+14 ; 0x138 12a: 96 e0 ldi r25, 0x06 ; 6 12c: 9a 95 dec r25 12e: f1 f7 brne .-4 ; 0x12c 130: 00 c0 rjmp .+0 ; 0x132 132: 81 50 subi r24, 0x01 ; 1 // AM2302 response signal min: 75us typ:80us max:85us timeout = 85; while(SENSOR_is_low) { _delay_us(1); if (!timeout--) 134: 09 f4 brne .+2 ; 0x138 136: 65 c0 rjmp .+202 ; 0x202 } } // AM2302 response signal min: 75us typ:80us max:85us timeout = 85; while(SENSOR_is_low) 138: 33 9b sbis 0x06, 3 ; 6 13a: f7 cf rjmp .-18 ; 0x12a 13c: 86 e5 ldi r24, 0x56 ; 86 13e: 07 c0 rjmp .+14 ; 0x14e 140: a6 e0 ldi r26, 0x06 ; 6 142: aa 95 dec r26 144: f1 f7 brne .-4 ; 0x142 146: 00 c0 rjmp .+0 ; 0x148 148: 81 50 subi r24, 0x01 ; 1 timeout = 85; while(SENSOR_is_hi) { _delay_us(1); if (!timeout--) 14a: 09 f4 brne .+2 ; 0x14e 14c: 5c c0 rjmp .+184 ; 0x206 return 3; } } // response to low time timeout = 85; while(SENSOR_is_hi) 14e: 33 99 sbic 0x06, 3 ; 6 150: f7 cf rjmp .-18 ; 0x140 * signal 0 high time: 22 26 30 (bit=0) * signal 1 high time: 68 70 75 (bit=1) * signal 0,1 down time: 48 50 55 */ uint8_t sensor_data[5]={0}; 152: fe 01 movw r30, r28 154: 31 96 adiw r30, 0x01 ; 1 156: 85 e0 ldi r24, 0x05 ; 5 158: df 01 movw r26, r30 15a: 1d 92 st X+, r1 15c: 8a 95 dec r24 15e: e9 f7 brne .-6 ; 0x15a 160: ae 01 movw r20, r28 162: 4a 5f subi r20, 0xFA ; 250 164: 5f 4f sbci r21, 0xFF ; 255 166: 22 c0 rjmp .+68 ; 0x1ac 168: b6 e0 ldi r27, 0x06 ; 6 16a: ba 95 dec r27 16c: f1 f7 brne .-4 ; 0x16a 16e: 00 c0 rjmp .+0 ; 0x170 170: 91 50 subi r25, 0x01 ; 1 while(SENSOR_is_low) { _delay_us(1); // if timeout == 0 => sensor do not response if (!timeout--) 172: 11 f4 brne .+4 ; 0x178 174: 4a c0 rjmp .+148 ; 0x20a 176: 98 e3 ldi r25, 0x38 ; 56 // get 8 bits from sensor for(uint8_t j = 1; j <= 8; j++) { // wait for sensor response timeout = 55; while(SENSOR_is_low) 178: 33 9b sbis 0x06, 3 ; 6 17a: f6 cf rjmp .-20 ; 0x168 17c: 38 ec ldi r19, 0xC8 ; 200 17e: 3a 95 dec r19 180: f1 f7 brne .-4 ; 0x17e } } // wait 30 us to check if bit is logical "1" or "0" _delay_us(30); sensor_byte <<= 1; // add new lower bit 182: 22 0f add r18, r18 // If sda ist high after 30 us then bit is logical "1" else it was a logical "0" // For a logical "1" sda have to be low after 75 us. if (SENSOR_is_hi) 184: 33 99 sbic 0x06, 3 ; 6 186: 08 c0 rjmp .+16 ; 0x198 188: 0b c0 rjmp .+22 ; 0x1a0 18a: a6 e0 ldi r26, 0x06 ; 6 18c: aa 95 dec r26 18e: f1 f7 brne .-4 ; 0x18c 190: 00 c0 rjmp .+0 ; 0x192 192: 91 50 subi r25, 0x01 ; 1 while(SENSOR_is_hi) { _delay_us(1); if (!timeout--) 194: 11 f4 brne .+4 ; 0x19a 196: 3b c0 rjmp .+118 ; 0x20e 198: 9e e2 ldi r25, 0x2E ; 46 if (SENSOR_is_hi) { sensor_byte |= 1; // add logical "1" timeout = 45; // 30us - 75us = 45us while(SENSOR_is_hi) 19a: 33 99 sbic 0x06, 3 ; 6 19c: f6 cf rjmp .-20 ; 0x18a // If sda ist high after 30 us then bit is logical "1" else it was a logical "0" // For a logical "1" sda have to be low after 75 us. if (SENSOR_is_hi) { sensor_byte |= 1; // add logical "1" 19e: 21 60 ori r18, 0x01 ; 1 1a0: 81 50 subi r24, 0x01 ; 1 for(uint8_t i = 0; i < 5; i++) { uint8_t sensor_byte = 0; // get 8 bits from sensor for(uint8_t j = 1; j <= 8; j++) 1a2: 49 f7 brne .-46 ; 0x176 } } } } sensor_data[i] = sensor_byte; 1a4: 21 93 st Z+, r18 * signal 0,1 down time: 48 50 55 */ uint8_t sensor_data[5]={0}; for(uint8_t i = 0; i < 5; i++) 1a6: 4e 17 cp r20, r30 1a8: 5f 07 cpc r21, r31 1aa: 19 f0 breq .+6 ; 0x1b2 1ac: 88 e0 ldi r24, 0x08 ; 8 1ae: 20 e0 ldi r18, 0x00 ; 0 1b0: e2 cf rjmp .-60 ; 0x176 sensor_data[i] = sensor_byte; } // checksum if ( ((sensor_data[0] + sensor_data[1] + sensor_data[2] + sensor_data[3]) & 0xff ) != sensor_data[4]) 1b2: a9 81 ldd r26, Y+1 ; 0x01 1b4: b0 e0 ldi r27, 0x00 ; 0 1b6: ea 81 ldd r30, Y+2 ; 0x02 1b8: f0 e0 ldi r31, 0x00 ; 0 1ba: 6b 81 ldd r22, Y+3 ; 0x03 1bc: 70 e0 ldi r23, 0x00 ; 0 1be: 4c 81 ldd r20, Y+4 ; 0x04 1c0: 50 e0 ldi r21, 0x00 ; 0 1c2: 9d 01 movw r18, r26 1c4: 2e 0f add r18, r30 1c6: 3f 1f adc r19, r31 1c8: 26 0f add r18, r22 1ca: 37 1f adc r19, r23 1cc: 24 0f add r18, r20 1ce: 35 1f adc r19, r21 1d0: 33 27 eor r19, r19 1d2: 0d 81 ldd r16, Y+5 ; 0x05 1d4: 10 e0 ldi r17, 0x00 ; 0 1d6: 20 17 cp r18, r16 1d8: 31 07 cpc r19, r17 1da: d9 f4 brne .+54 ; 0x212 // debug output //printf("%b %b %b %b %b %b" CR, sensor_data[0], sensor_data[1], sensor_data[2], sensor_data[3], sensor_data[4], ((sensor_data[0]+sensor_data[1]+sensor_data[2]+sensor_data[3]) & 0xff )); return 7; } g_u16Humidity = (sensor_data[0] << 8) + sensor_data[1]; 1dc: ba 2f mov r27, r26 1de: aa 27 eor r26, r26 1e0: ea 0f add r30, r26 1e2: fb 1f adc r31, r27 1e4: f0 93 11 01 sts 0x0111, r31 ; 0x800111 1e8: e0 93 10 01 sts 0x0110, r30 ; 0x800110 g_u16Temperature = (sensor_data[2] << 8) + sensor_data[3]; 1ec: 76 2f mov r23, r22 1ee: 66 27 eor r22, r22 1f0: 46 0f add r20, r22 1f2: 57 1f adc r21, r23 1f4: 50 93 0f 01 sts 0x010F, r21 ; 0x80010f <__data_end+0x1> 1f8: 40 93 0e 01 sts 0x010E, r20 ; 0x80010e <__data_end> return 0; 1fc: 0b c0 rjmp .+22 ; 0x214 while ( SENSOR_is_hi ) { _delay_us(1); if ( !timeout-- ) { return 2; 1fe: 82 e0 ldi r24, 0x02 ; 2 200: 09 c0 rjmp .+18 ; 0x214 while(SENSOR_is_low) { _delay_us(1); if (!timeout--) { return 3; 202: 83 e0 ldi r24, 0x03 ; 3 204: 07 c0 rjmp .+14 ; 0x214 while(SENSOR_is_hi) { _delay_us(1); if (!timeout--) { return 4; 206: 84 e0 ldi r24, 0x04 ; 4 208: 05 c0 rjmp .+10 ; 0x214 _delay_us(1); // if timeout == 0 => sensor do not response if (!timeout--) { return 5; 20a: 85 e0 ldi r24, 0x05 ; 5 20c: 03 c0 rjmp .+6 ; 0x214 { _delay_us(1); if (!timeout--) { return 6; 20e: 86 e0 ldi r24, 0x06 ; 6 210: 01 c0 rjmp .+2 ; 0x214 // checksum if ( ((sensor_data[0] + sensor_data[1] + sensor_data[2] + sensor_data[3]) & 0xff ) != sensor_data[4]) { // debug output //printf("%b %b %b %b %b %b" CR, sensor_data[0], sensor_data[1], sensor_data[2], sensor_data[3], sensor_data[4], ((sensor_data[0]+sensor_data[1]+sensor_data[2]+sensor_data[3]) & 0xff )); return 7; 212: 87 e0 ldi r24, 0x07 ; 7 g_u16Humidity = (sensor_data[0] << 8) + sensor_data[1]; g_u16Temperature = (sensor_data[2] << 8) + sensor_data[3]; return 0; 214: 0f 90 pop r0 216: 0f 90 pop r0 218: 0f 90 pop r0 21a: 0f 90 pop r0 21c: 0f 90 pop r0 21e: df 91 pop r29 220: cf 91 pop r28 222: 1f 91 pop r17 224: 0f 91 pop r16 226: 08 95 ret 00000228
: int main(void) { uint16_t u16Counter = 0U; uint8_t u8ErrorCode = 0U; vInit(); 228: 21 df rcall .-446 ; 0x6c g_u8Tens = 10; //n 22a: 8a e0 ldi r24, 0x0A ; 10 22c: 80 93 13 01 sts 0x0113, r24 ; 0x800113 g_u8Ones = 11; //o 230: 8b e0 ldi r24, 0x0B ; 11 232: 80 93 12 01 sts 0x0112, r24 ; 0x800112 /************************************************************************/ /* main() */ /************************************************************************/ int main(void) { uint16_t u16Counter = 0U; 236: c0 e0 ldi r28, 0x00 ; 0 238: d0 e0 ldi r29, 0x00 ; 0 //g_u8Tens = g_u16Temperature / 10U; //g_u8Ones = g_u16Temperature - (g_u8Tens * 10U); } else { g_u8Tens = 12; 23a: 1c e0 ldi r17, 0x0C ; 12 23c: 3a c0 rjmp .+116 ; 0x2b2 while ( 1 ) { if ( u16Counter > 1000 ) { if ( SENSOR_is_hi ) 23e: 33 9b sbis 0x06, 3 ; 6 240: 02 c0 rjmp .+4 ; 0x246 { SENSOR_sda_out; 242: 3b 9a sbi 0x07, 3 ; 7 SENSOR_sda_low; 244: 43 98 cbi 0x08, 3 ; 8 } if ( u16Counter > 1005 ) 246: ce 3e cpi r28, 0xEE ; 238 248: 83 e0 ldi r24, 0x03 ; 3 24a: d8 07 cpc r29, r24 24c: 90 f1 brcs .+100 ; 0x2b2 { //_delay_us(1200); //_delay_ms(20); // start signal (pull sda down for min 0.8ms and maximum 20ms) u8ErrorCode = u8ReadSensor(); 24e: 56 df rcall .-340 ; 0xfc if ( 0 == u8ErrorCode ) 250: 81 11 cpse r24, r1 252: 29 c0 rjmp .+82 ; 0x2a6 { g_u16Humidity /= 10; 254: e0 91 10 01 lds r30, 0x0110 ; 0x800110 258: f0 91 11 01 lds r31, 0x0111 ; 0x800111 25c: 9f 01 movw r18, r30 25e: ad ec ldi r26, 0xCD ; 205 260: bc ec ldi r27, 0xCC ; 204 262: 2f d0 rcall .+94 ; 0x2c2 <__umulhisi3> 264: ac 01 movw r20, r24 266: 56 95 lsr r21 268: 47 95 ror r20 26a: 56 95 lsr r21 26c: 47 95 ror r20 26e: 56 95 lsr r21 270: 47 95 ror r20 272: 50 93 11 01 sts 0x0111, r21 ; 0x800111 276: 40 93 10 01 sts 0x0110, r20 ; 0x800110 g_u8Tens = g_u16Humidity / 10U; 27a: 36 95 lsr r19 27c: 27 95 ror r18 27e: 36 95 lsr r19 280: 27 95 ror r18 282: ab e7 ldi r26, 0x7B ; 123 284: b4 e1 ldi r27, 0x14 ; 20 286: 1d d0 rcall .+58 ; 0x2c2 <__umulhisi3> 288: 96 95 lsr r25 28a: 87 95 ror r24 28c: 80 93 13 01 sts 0x0113, r24 ; 0x800113 g_u8Ones = g_u16Humidity - (g_u8Tens * 10U); 290: 88 0f add r24, r24 292: 98 2f mov r25, r24 294: 99 0f add r25, r25 296: 99 0f add r25, r25 298: 89 0f add r24, r25 29a: 48 1b sub r20, r24 29c: 40 93 12 01 sts 0x0112, r20 ; 0x800112 else { g_u8Tens = 12; g_u8Ones = u8ErrorCode; } u16Counter = 0U; 2a0: c0 e0 ldi r28, 0x00 ; 0 2a2: d0 e0 ldi r29, 0x00 ; 0 2a4: 06 c0 rjmp .+12 ; 0x2b2 //g_u8Tens = g_u16Temperature / 10U; //g_u8Ones = g_u16Temperature - (g_u8Tens * 10U); } else { g_u8Tens = 12; 2a6: 10 93 13 01 sts 0x0113, r17 ; 0x800113 g_u8Ones = u8ErrorCode; 2aa: 80 93 12 01 sts 0x0112, r24 ; 0x800112 } u16Counter = 0U; 2ae: c0 e0 ldi r28, 0x00 ; 0 2b0: d0 e0 ldi r29, 0x00 ; 0 } } u16Counter++; 2b2: 21 96 adiw r28, 0x01 ; 1 //vReadButtons(); //vCalculate(); vShow(); 2b4: eb de rcall .-554 ; 0x8c g_u8Tens = 10; //n g_u8Ones = 11; //o while ( 1 ) { if ( u16Counter > 1000 ) 2b6: c9 3e cpi r28, 0xE9 ; 233 2b8: 83 e0 ldi r24, 0x03 ; 3 2ba: d8 07 cpc r29, r24 2bc: 08 f0 brcs .+2 ; 0x2c0 2be: bf cf rjmp .-130 ; 0x23e 2c0: f8 cf rjmp .-16 ; 0x2b2 000002c2 <__umulhisi3>: 2c2: a2 9f mul r26, r18 2c4: b0 01 movw r22, r0 2c6: b3 9f mul r27, r19 2c8: c0 01 movw r24, r0 2ca: a3 9f mul r26, r19 2cc: 01 d0 rcall .+2 ; 0x2d0 <__umulhisi3+0xe> 2ce: b2 9f mul r27, r18 2d0: 70 0d add r23, r0 2d2: 81 1d adc r24, r1 2d4: 11 24 eor r1, r1 2d6: 91 1d adc r25, r1 2d8: 08 95 ret 000002da <_exit>: 2da: f8 94 cli 000002dc <__stop_program>: 2dc: ff cf rjmp .-2 ; 0x2dc <__stop_program>