Não pode escolher mais do que 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.
 
 

716 linhas
25 KiB

  1. PoolClock.elf: file format elf32-avr
  2. Sections:
  3. Idx Name Size VMA LMA File off Algn
  4. 0 .data 0000000e 00800100 000002de 00000372 2**0
  5. CONTENTS, ALLOC, LOAD, DATA
  6. 1 .text 000002de 00000000 00000000 00000094 2**1
  7. CONTENTS, ALLOC, LOAD, READONLY, CODE
  8. 2 .bss 00000006 0080010e 0080010e 00000380 2**0
  9. ALLOC
  10. 3 .comment 00000030 00000000 00000000 00000380 2**0
  11. CONTENTS, READONLY
  12. 4 .note.gnu.avr.deviceinfo 00000040 00000000 00000000 000003b0 2**2
  13. CONTENTS, READONLY
  14. 5 .debug_aranges 00000048 00000000 00000000 000003f0 2**0
  15. CONTENTS, READONLY, DEBUGGING
  16. 6 .debug_info 00000bbe 00000000 00000000 00000438 2**0
  17. CONTENTS, READONLY, DEBUGGING
  18. 7 .debug_abbrev 00000784 00000000 00000000 00000ff6 2**0
  19. CONTENTS, READONLY, DEBUGGING
  20. 8 .debug_line 00000507 00000000 00000000 0000177a 2**0
  21. CONTENTS, READONLY, DEBUGGING
  22. 9 .debug_frame 00000090 00000000 00000000 00001c84 2**2
  23. CONTENTS, READONLY, DEBUGGING
  24. 10 .debug_str 00000487 00000000 00000000 00001d14 2**0
  25. CONTENTS, READONLY, DEBUGGING
  26. 11 .debug_loc 00000634 00000000 00000000 0000219b 2**0
  27. CONTENTS, READONLY, DEBUGGING
  28. 12 .debug_ranges 00000098 00000000 00000000 000027cf 2**0
  29. CONTENTS, READONLY, DEBUGGING
  30. Disassembly of section .text:
  31. 00000000 <__vectors>:
  32. 0: 19 c0 rjmp .+50 ; 0x34 <__ctors_end>
  33. 2: 33 c0 rjmp .+102 ; 0x6a <__bad_interrupt>
  34. 4: 32 c0 rjmp .+100 ; 0x6a <__bad_interrupt>
  35. 6: 31 c0 rjmp .+98 ; 0x6a <__bad_interrupt>
  36. 8: 30 c0 rjmp .+96 ; 0x6a <__bad_interrupt>
  37. a: 2f c0 rjmp .+94 ; 0x6a <__bad_interrupt>
  38. c: 2e c0 rjmp .+92 ; 0x6a <__bad_interrupt>
  39. e: 2d c0 rjmp .+90 ; 0x6a <__bad_interrupt>
  40. 10: 2c c0 rjmp .+88 ; 0x6a <__bad_interrupt>
  41. 12: 2b c0 rjmp .+86 ; 0x6a <__bad_interrupt>
  42. 14: 2a c0 rjmp .+84 ; 0x6a <__bad_interrupt>
  43. 16: 29 c0 rjmp .+82 ; 0x6a <__bad_interrupt>
  44. 18: 28 c0 rjmp .+80 ; 0x6a <__bad_interrupt>
  45. 1a: 27 c0 rjmp .+78 ; 0x6a <__bad_interrupt>
  46. 1c: 26 c0 rjmp .+76 ; 0x6a <__bad_interrupt>
  47. 1e: 25 c0 rjmp .+74 ; 0x6a <__bad_interrupt>
  48. 20: 24 c0 rjmp .+72 ; 0x6a <__bad_interrupt>
  49. 22: 23 c0 rjmp .+70 ; 0x6a <__bad_interrupt>
  50. 24: 22 c0 rjmp .+68 ; 0x6a <__bad_interrupt>
  51. 26: 21 c0 rjmp .+66 ; 0x6a <__bad_interrupt>
  52. 28: 20 c0 rjmp .+64 ; 0x6a <__bad_interrupt>
  53. 2a: 1f c0 rjmp .+62 ; 0x6a <__bad_interrupt>
  54. 2c: 1e c0 rjmp .+60 ; 0x6a <__bad_interrupt>
  55. 2e: 1d c0 rjmp .+58 ; 0x6a <__bad_interrupt>
  56. 30: 1c c0 rjmp .+56 ; 0x6a <__bad_interrupt>
  57. 32: 1b c0 rjmp .+54 ; 0x6a <__bad_interrupt>
  58. 00000034 <__ctors_end>:
  59. 34: 11 24 eor r1, r1
  60. 36: 1f be out 0x3f, r1 ; 63
  61. 38: cf ef ldi r28, 0xFF ; 255
  62. 3a: d4 e0 ldi r29, 0x04 ; 4
  63. 3c: de bf out 0x3e, r29 ; 62
  64. 3e: cd bf out 0x3d, r28 ; 61
  65. 00000040 <__do_copy_data>:
  66. 40: 11 e0 ldi r17, 0x01 ; 1
  67. 42: a0 e0 ldi r26, 0x00 ; 0
  68. 44: b1 e0 ldi r27, 0x01 ; 1
  69. 46: ee ed ldi r30, 0xDE ; 222
  70. 48: f2 e0 ldi r31, 0x02 ; 2
  71. 4a: 02 c0 rjmp .+4 ; 0x50 <__do_copy_data+0x10>
  72. 4c: 05 90 lpm r0, Z+
  73. 4e: 0d 92 st X+, r0
  74. 50: ae 30 cpi r26, 0x0E ; 14
  75. 52: b1 07 cpc r27, r17
  76. 54: d9 f7 brne .-10 ; 0x4c <__do_copy_data+0xc>
  77. 00000056 <__do_clear_bss>:
  78. 56: 21 e0 ldi r18, 0x01 ; 1
  79. 58: ae e0 ldi r26, 0x0E ; 14
  80. 5a: b1 e0 ldi r27, 0x01 ; 1
  81. 5c: 01 c0 rjmp .+2 ; 0x60 <.do_clear_bss_start>
  82. 0000005e <.do_clear_bss_loop>:
  83. 5e: 1d 92 st X+, r1
  84. 00000060 <.do_clear_bss_start>:
  85. 60: a4 31 cpi r26, 0x14 ; 20
  86. 62: b2 07 cpc r27, r18
  87. 64: e1 f7 brne .-8 ; 0x5e <.do_clear_bss_loop>
  88. 66: e0 d0 rcall .+448 ; 0x228 <main>
  89. 68: 38 c1 rjmp .+624 ; 0x2da <_exit>
  90. 0000006a <__bad_interrupt>:
  91. 6a: ca cf rjmp .-108 ; 0x0 <__vectors>
  92. 0000006c <vInit>:
  93. }
  94. g_u8CountDecs = 0U; //reset decrement counter
  95. }
  96. g_u8Tens = g_u8WaterTemperature / 10U;
  97. g_u8Ones = g_u8WaterTemperature - (g_u8Tens * 10U);
  98. 6c: 8f ef ldi r24, 0xFF ; 255
  99. 6e: 8a b9 out 0x0a, r24 ; 10
  100. 70: 87 e0 ldi r24, 0x07 ; 7
  101. 72: 84 b9 out 0x04, r24 ; 4
  102. 74: 3b 98 cbi 0x07, 3 ; 7
  103. 76: 43 98 cbi 0x08, 3 ; 8
  104. 78: 2f ef ldi r18, 0xFF ; 255
  105. 7a: 81 e1 ldi r24, 0x11 ; 17
  106. 7c: 9a e7 ldi r25, 0x7A ; 122
  107. 7e: 21 50 subi r18, 0x01 ; 1
  108. 80: 80 40 sbci r24, 0x00 ; 0
  109. 82: 90 40 sbci r25, 0x00 ; 0
  110. 84: e1 f7 brne .-8 ; 0x7e <vInit+0x12>
  111. 86: 00 c0 rjmp .+0 ; 0x88 <vInit+0x1c>
  112. 88: 00 00 nop
  113. 8a: 08 95 ret
  114. 0000008c <vShow>:
  115. /************************************************************************/
  116. /* */
  117. /************************************************************************/
  118. void vShow( void )
  119. {
  120. PORTD = 0U;
  121. 8c: 1b b8 out 0x0b, r1 ; 11
  122. PORTB = SELECT_DIGIT(DIGIT_TENS);
  123. 8e: 84 e0 ldi r24, 0x04 ; 4
  124. 90: 85 b9 out 0x05, r24 ; 5
  125. #else
  126. //round up by default
  127. __ticks_dc = (uint32_t)(ceil(fabs(__tmp)));
  128. #endif
  129. __builtin_avr_delay_cycles(__ticks_dc);
  130. 92: 86 e0 ldi r24, 0x06 ; 6
  131. 94: 8a 95 dec r24
  132. 96: f1 f7 brne .-4 ; 0x94 <vShow+0x8>
  133. 98: 00 c0 rjmp .+0 ; 0x9a <vShow+0xe>
  134. _delay_us(1);
  135. PORTD = g_au8Numbers[g_u8Tens];
  136. 9a: e0 91 13 01 lds r30, 0x0113 ; 0x800113 <g_u8Tens>
  137. 9e: f0 e0 ldi r31, 0x00 ; 0
  138. a0: e0 50 subi r30, 0x00 ; 0
  139. a2: ff 4f sbci r31, 0xFF ; 255
  140. a4: 80 81 ld r24, Z
  141. a6: 8b b9 out 0x0b, r24 ; 11
  142. #else
  143. //round up by default
  144. __ticks_dc = (uint32_t)(ceil(fabs(__tmp)));
  145. #endif
  146. __builtin_avr_delay_cycles(__ticks_dc);
  147. a8: 87 e8 ldi r24, 0x87 ; 135
  148. aa: 93 e1 ldi r25, 0x13 ; 19
  149. ac: 01 97 sbiw r24, 0x01 ; 1
  150. ae: f1 f7 brne .-4 ; 0xac <vShow+0x20>
  151. b0: 00 c0 rjmp .+0 ; 0xb2 <vShow+0x26>
  152. b2: 00 00 nop
  153. _delay_ms(MULTIPLEX_DELAY_MS);
  154. PORTD = 0U;
  155. b4: 1b b8 out 0x0b, r1 ; 11
  156. PORTB = SELECT_DIGIT(DIGIT_ONES);
  157. b6: 82 e0 ldi r24, 0x02 ; 2
  158. b8: 85 b9 out 0x05, r24 ; 5
  159. #else
  160. //round up by default
  161. __ticks_dc = (uint32_t)(ceil(fabs(__tmp)));
  162. #endif
  163. __builtin_avr_delay_cycles(__ticks_dc);
  164. ba: 96 e0 ldi r25, 0x06 ; 6
  165. bc: 9a 95 dec r25
  166. be: f1 f7 brne .-4 ; 0xbc <vShow+0x30>
  167. c0: 00 c0 rjmp .+0 ; 0xc2 <vShow+0x36>
  168. _delay_us(1);
  169. PORTD = g_au8Numbers[g_u8Ones];
  170. c2: e0 91 12 01 lds r30, 0x0112 ; 0x800112 <g_u8Ones>
  171. c6: f0 e0 ldi r31, 0x00 ; 0
  172. c8: e0 50 subi r30, 0x00 ; 0
  173. ca: ff 4f sbci r31, 0xFF ; 255
  174. cc: 80 81 ld r24, Z
  175. ce: 8b b9 out 0x0b, r24 ; 11
  176. #else
  177. //round up by default
  178. __ticks_dc = (uint32_t)(ceil(fabs(__tmp)));
  179. #endif
  180. __builtin_avr_delay_cycles(__ticks_dc);
  181. d0: 87 e8 ldi r24, 0x87 ; 135
  182. d2: 93 e1 ldi r25, 0x13 ; 19
  183. d4: 01 97 sbiw r24, 0x01 ; 1
  184. d6: f1 f7 brne .-4 ; 0xd4 <vShow+0x48>
  185. d8: 00 c0 rjmp .+0 ; 0xda <vShow+0x4e>
  186. da: 00 00 nop
  187. _delay_ms(MULTIPLEX_DELAY_MS);
  188. PORTD = 0U;
  189. dc: 1b b8 out 0x0b, r1 ; 11
  190. PORTB = SELECT_DIGIT(DIGIT_UNIT);
  191. de: 81 e0 ldi r24, 0x01 ; 1
  192. e0: 85 b9 out 0x05, r24 ; 5
  193. #else
  194. //round up by default
  195. __ticks_dc = (uint32_t)(ceil(fabs(__tmp)));
  196. #endif
  197. __builtin_avr_delay_cycles(__ticks_dc);
  198. e2: 96 e0 ldi r25, 0x06 ; 6
  199. e4: 9a 95 dec r25
  200. e6: f1 f7 brne .-4 ; 0xe4 <vShow+0x58>
  201. e8: 00 c0 rjmp .+0 ; 0xea <vShow+0x5e>
  202. _delay_us(1);
  203. PORTD = DEGREE_CELCIUS;
  204. ea: 8d ea ldi r24, 0xAD ; 173
  205. ec: 8b b9 out 0x0b, r24 ; 11
  206. #else
  207. //round up by default
  208. __ticks_dc = (uint32_t)(ceil(fabs(__tmp)));
  209. #endif
  210. __builtin_avr_delay_cycles(__ticks_dc);
  211. ee: 87 e8 ldi r24, 0x87 ; 135
  212. f0: 93 e1 ldi r25, 0x13 ; 19
  213. f2: 01 97 sbiw r24, 0x01 ; 1
  214. f4: f1 f7 brne .-4 ; 0xf2 <vShow+0x66>
  215. f6: 00 c0 rjmp .+0 ; 0xf8 <vShow+0x6c>
  216. f8: 00 00 nop
  217. fa: 08 95 ret
  218. 000000fc <u8ReadSensor>:
  219. /************************************************************************/
  220. /* */
  221. /************************************************************************/
  222. uint8_t u8ReadSensor( void )
  223. {
  224. fc: 0f 93 push r16
  225. fe: 1f 93 push r17
  226. 100: cf 93 push r28
  227. 102: df 93 push r29
  228. 104: 00 d0 rcall .+0 ; 0x106 <u8ReadSensor+0xa>
  229. 106: 00 d0 rcall .+0 ; 0x108 <u8ReadSensor+0xc>
  230. 108: 1f 92 push r1
  231. 10a: cd b7 in r28, 0x3d ; 61
  232. 10c: de b7 in r29, 0x3e ; 62
  233. uint8_t timeout = 200;
  234. SENSOR_sda_in;
  235. 10e: 3b 98 cbi 0x07, 3 ; 7
  236. // Bus master has released time min: 20us, typ: 30us, max: 200us
  237. while ( SENSOR_is_hi )
  238. 110: 89 ec ldi r24, 0xC9 ; 201
  239. 112: 07 c0 rjmp .+14 ; 0x122 <u8ReadSensor+0x26>
  240. #else
  241. //round up by default
  242. __ticks_dc = (uint32_t)(ceil(fabs(__tmp)));
  243. #endif
  244. __builtin_avr_delay_cycles(__ticks_dc);
  245. 114: 36 e0 ldi r19, 0x06 ; 6
  246. 116: 3a 95 dec r19
  247. 118: f1 f7 brne .-4 ; 0x116 <u8ReadSensor+0x1a>
  248. 11a: 00 c0 rjmp .+0 ; 0x11c <u8ReadSensor+0x20>
  249. 11c: 81 50 subi r24, 0x01 ; 1
  250. {
  251. _delay_us(1);
  252. if ( !timeout-- )
  253. 11e: 09 f4 brne .+2 ; 0x122 <u8ReadSensor+0x26>
  254. 120: 6e c0 rjmp .+220 ; 0x1fe <u8ReadSensor+0x102>
  255. uint8_t timeout = 200;
  256. SENSOR_sda_in;
  257. // Bus master has released time min: 20us, typ: 30us, max: 200us
  258. while ( SENSOR_is_hi )
  259. 122: 33 99 sbic 0x06, 3 ; 6
  260. 124: f7 cf rjmp .-18 ; 0x114 <u8ReadSensor+0x18>
  261. 126: 86 e5 ldi r24, 0x56 ; 86
  262. 128: 07 c0 rjmp .+14 ; 0x138 <u8ReadSensor+0x3c>
  263. 12a: 96 e0 ldi r25, 0x06 ; 6
  264. 12c: 9a 95 dec r25
  265. 12e: f1 f7 brne .-4 ; 0x12c <u8ReadSensor+0x30>
  266. 130: 00 c0 rjmp .+0 ; 0x132 <u8ReadSensor+0x36>
  267. 132: 81 50 subi r24, 0x01 ; 1
  268. // AM2302 response signal min: 75us typ:80us max:85us
  269. timeout = 85;
  270. while(SENSOR_is_low)
  271. {
  272. _delay_us(1);
  273. if (!timeout--)
  274. 134: 09 f4 brne .+2 ; 0x138 <u8ReadSensor+0x3c>
  275. 136: 65 c0 rjmp .+202 ; 0x202 <u8ReadSensor+0x106>
  276. }
  277. }
  278. // AM2302 response signal min: 75us typ:80us max:85us
  279. timeout = 85;
  280. while(SENSOR_is_low)
  281. 138: 33 9b sbis 0x06, 3 ; 6
  282. 13a: f7 cf rjmp .-18 ; 0x12a <u8ReadSensor+0x2e>
  283. 13c: 86 e5 ldi r24, 0x56 ; 86
  284. 13e: 07 c0 rjmp .+14 ; 0x14e <u8ReadSensor+0x52>
  285. 140: a6 e0 ldi r26, 0x06 ; 6
  286. 142: aa 95 dec r26
  287. 144: f1 f7 brne .-4 ; 0x142 <u8ReadSensor+0x46>
  288. 146: 00 c0 rjmp .+0 ; 0x148 <u8ReadSensor+0x4c>
  289. 148: 81 50 subi r24, 0x01 ; 1
  290. timeout = 85;
  291. while(SENSOR_is_hi)
  292. {
  293. _delay_us(1);
  294. if (!timeout--)
  295. 14a: 09 f4 brne .+2 ; 0x14e <u8ReadSensor+0x52>
  296. 14c: 5c c0 rjmp .+184 ; 0x206 <u8ReadSensor+0x10a>
  297. return 3;
  298. }
  299. } // response to low time
  300. timeout = 85;
  301. while(SENSOR_is_hi)
  302. 14e: 33 99 sbic 0x06, 3 ; 6
  303. 150: f7 cf rjmp .-18 ; 0x140 <u8ReadSensor+0x44>
  304. * signal 0 high time: 22 26 30 (bit=0)
  305. * signal 1 high time: 68 70 75 (bit=1)
  306. * signal 0,1 down time: 48 50 55
  307. */
  308. uint8_t sensor_data[5]={0};
  309. 152: fe 01 movw r30, r28
  310. 154: 31 96 adiw r30, 0x01 ; 1
  311. 156: 85 e0 ldi r24, 0x05 ; 5
  312. 158: df 01 movw r26, r30
  313. 15a: 1d 92 st X+, r1
  314. 15c: 8a 95 dec r24
  315. 15e: e9 f7 brne .-6 ; 0x15a <u8ReadSensor+0x5e>
  316. 160: ae 01 movw r20, r28
  317. 162: 4a 5f subi r20, 0xFA ; 250
  318. 164: 5f 4f sbci r21, 0xFF ; 255
  319. 166: 22 c0 rjmp .+68 ; 0x1ac <u8ReadSensor+0xb0>
  320. 168: b6 e0 ldi r27, 0x06 ; 6
  321. 16a: ba 95 dec r27
  322. 16c: f1 f7 brne .-4 ; 0x16a <u8ReadSensor+0x6e>
  323. 16e: 00 c0 rjmp .+0 ; 0x170 <u8ReadSensor+0x74>
  324. 170: 91 50 subi r25, 0x01 ; 1
  325. while(SENSOR_is_low)
  326. {
  327. _delay_us(1);
  328. // if timeout == 0 => sensor do not response
  329. if (!timeout--)
  330. 172: 11 f4 brne .+4 ; 0x178 <u8ReadSensor+0x7c>
  331. 174: 4a c0 rjmp .+148 ; 0x20a <u8ReadSensor+0x10e>
  332. 176: 98 e3 ldi r25, 0x38 ; 56
  333. // get 8 bits from sensor
  334. for(uint8_t j = 1; j <= 8; j++)
  335. {
  336. // wait for sensor response
  337. timeout = 55;
  338. while(SENSOR_is_low)
  339. 178: 33 9b sbis 0x06, 3 ; 6
  340. 17a: f6 cf rjmp .-20 ; 0x168 <u8ReadSensor+0x6c>
  341. 17c: 38 ec ldi r19, 0xC8 ; 200
  342. 17e: 3a 95 dec r19
  343. 180: f1 f7 brne .-4 ; 0x17e <u8ReadSensor+0x82>
  344. }
  345. }
  346. // wait 30 us to check if bit is logical "1" or "0"
  347. _delay_us(30);
  348. sensor_byte <<= 1; // add new lower bit
  349. 182: 22 0f add r18, r18
  350. // If sda ist high after 30 us then bit is logical "1" else it was a logical "0"
  351. // For a logical "1" sda have to be low after 75 us.
  352. if (SENSOR_is_hi)
  353. 184: 33 99 sbic 0x06, 3 ; 6
  354. 186: 08 c0 rjmp .+16 ; 0x198 <u8ReadSensor+0x9c>
  355. 188: 0b c0 rjmp .+22 ; 0x1a0 <u8ReadSensor+0xa4>
  356. 18a: a6 e0 ldi r26, 0x06 ; 6
  357. 18c: aa 95 dec r26
  358. 18e: f1 f7 brne .-4 ; 0x18c <u8ReadSensor+0x90>
  359. 190: 00 c0 rjmp .+0 ; 0x192 <u8ReadSensor+0x96>
  360. 192: 91 50 subi r25, 0x01 ; 1
  361. while(SENSOR_is_hi)
  362. {
  363. _delay_us(1);
  364. if (!timeout--)
  365. 194: 11 f4 brne .+4 ; 0x19a <u8ReadSensor+0x9e>
  366. 196: 3b c0 rjmp .+118 ; 0x20e <u8ReadSensor+0x112>
  367. 198: 9e e2 ldi r25, 0x2E ; 46
  368. if (SENSOR_is_hi)
  369. {
  370. sensor_byte |= 1; // add logical "1"
  371. timeout = 45; // 30us - 75us = 45us
  372. while(SENSOR_is_hi)
  373. 19a: 33 99 sbic 0x06, 3 ; 6
  374. 19c: f6 cf rjmp .-20 ; 0x18a <u8ReadSensor+0x8e>
  375. // If sda ist high after 30 us then bit is logical "1" else it was a logical "0"
  376. // For a logical "1" sda have to be low after 75 us.
  377. if (SENSOR_is_hi)
  378. {
  379. sensor_byte |= 1; // add logical "1"
  380. 19e: 21 60 ori r18, 0x01 ; 1
  381. 1a0: 81 50 subi r24, 0x01 ; 1
  382. for(uint8_t i = 0; i < 5; i++)
  383. {
  384. uint8_t sensor_byte = 0;
  385. // get 8 bits from sensor
  386. for(uint8_t j = 1; j <= 8; j++)
  387. 1a2: 49 f7 brne .-46 ; 0x176 <u8ReadSensor+0x7a>
  388. }
  389. }
  390. }
  391. }
  392. sensor_data[i] = sensor_byte;
  393. 1a4: 21 93 st Z+, r18
  394. * signal 0,1 down time: 48 50 55
  395. */
  396. uint8_t sensor_data[5]={0};
  397. for(uint8_t i = 0; i < 5; i++)
  398. 1a6: 4e 17 cp r20, r30
  399. 1a8: 5f 07 cpc r21, r31
  400. 1aa: 19 f0 breq .+6 ; 0x1b2 <u8ReadSensor+0xb6>
  401. 1ac: 88 e0 ldi r24, 0x08 ; 8
  402. 1ae: 20 e0 ldi r18, 0x00 ; 0
  403. 1b0: e2 cf rjmp .-60 ; 0x176 <u8ReadSensor+0x7a>
  404. sensor_data[i] = sensor_byte;
  405. }
  406. // checksum
  407. if ( ((sensor_data[0] + sensor_data[1] + sensor_data[2] + sensor_data[3]) & 0xff ) != sensor_data[4])
  408. 1b2: a9 81 ldd r26, Y+1 ; 0x01
  409. 1b4: b0 e0 ldi r27, 0x00 ; 0
  410. 1b6: ea 81 ldd r30, Y+2 ; 0x02
  411. 1b8: f0 e0 ldi r31, 0x00 ; 0
  412. 1ba: 6b 81 ldd r22, Y+3 ; 0x03
  413. 1bc: 70 e0 ldi r23, 0x00 ; 0
  414. 1be: 4c 81 ldd r20, Y+4 ; 0x04
  415. 1c0: 50 e0 ldi r21, 0x00 ; 0
  416. 1c2: 9d 01 movw r18, r26
  417. 1c4: 2e 0f add r18, r30
  418. 1c6: 3f 1f adc r19, r31
  419. 1c8: 26 0f add r18, r22
  420. 1ca: 37 1f adc r19, r23
  421. 1cc: 24 0f add r18, r20
  422. 1ce: 35 1f adc r19, r21
  423. 1d0: 33 27 eor r19, r19
  424. 1d2: 0d 81 ldd r16, Y+5 ; 0x05
  425. 1d4: 10 e0 ldi r17, 0x00 ; 0
  426. 1d6: 20 17 cp r18, r16
  427. 1d8: 31 07 cpc r19, r17
  428. 1da: d9 f4 brne .+54 ; 0x212 <u8ReadSensor+0x116>
  429. // debug output
  430. //printf("%b %b %b %b %b %b" CR, sensor_data[0], sensor_data[1], sensor_data[2], sensor_data[3], sensor_data[4], ((sensor_data[0]+sensor_data[1]+sensor_data[2]+sensor_data[3]) & 0xff ));
  431. return 7;
  432. }
  433. g_u16Humidity = (sensor_data[0] << 8) + sensor_data[1];
  434. 1dc: ba 2f mov r27, r26
  435. 1de: aa 27 eor r26, r26
  436. 1e0: ea 0f add r30, r26
  437. 1e2: fb 1f adc r31, r27
  438. 1e4: f0 93 11 01 sts 0x0111, r31 ; 0x800111 <g_u16Humidity+0x1>
  439. 1e8: e0 93 10 01 sts 0x0110, r30 ; 0x800110 <g_u16Humidity>
  440. g_u16Temperature = (sensor_data[2] << 8) + sensor_data[3];
  441. 1ec: 76 2f mov r23, r22
  442. 1ee: 66 27 eor r22, r22
  443. 1f0: 46 0f add r20, r22
  444. 1f2: 57 1f adc r21, r23
  445. 1f4: 50 93 0f 01 sts 0x010F, r21 ; 0x80010f <__data_end+0x1>
  446. 1f8: 40 93 0e 01 sts 0x010E, r20 ; 0x80010e <__data_end>
  447. return 0;
  448. 1fc: 0b c0 rjmp .+22 ; 0x214 <u8ReadSensor+0x118>
  449. while ( SENSOR_is_hi )
  450. {
  451. _delay_us(1);
  452. if ( !timeout-- )
  453. {
  454. return 2;
  455. 1fe: 82 e0 ldi r24, 0x02 ; 2
  456. 200: 09 c0 rjmp .+18 ; 0x214 <u8ReadSensor+0x118>
  457. while(SENSOR_is_low)
  458. {
  459. _delay_us(1);
  460. if (!timeout--)
  461. {
  462. return 3;
  463. 202: 83 e0 ldi r24, 0x03 ; 3
  464. 204: 07 c0 rjmp .+14 ; 0x214 <u8ReadSensor+0x118>
  465. while(SENSOR_is_hi)
  466. {
  467. _delay_us(1);
  468. if (!timeout--)
  469. {
  470. return 4;
  471. 206: 84 e0 ldi r24, 0x04 ; 4
  472. 208: 05 c0 rjmp .+10 ; 0x214 <u8ReadSensor+0x118>
  473. _delay_us(1);
  474. // if timeout == 0 => sensor do not response
  475. if (!timeout--)
  476. {
  477. return 5;
  478. 20a: 85 e0 ldi r24, 0x05 ; 5
  479. 20c: 03 c0 rjmp .+6 ; 0x214 <u8ReadSensor+0x118>
  480. {
  481. _delay_us(1);
  482. if (!timeout--)
  483. {
  484. return 6;
  485. 20e: 86 e0 ldi r24, 0x06 ; 6
  486. 210: 01 c0 rjmp .+2 ; 0x214 <u8ReadSensor+0x118>
  487. // checksum
  488. if ( ((sensor_data[0] + sensor_data[1] + sensor_data[2] + sensor_data[3]) & 0xff ) != sensor_data[4])
  489. {
  490. // debug output
  491. //printf("%b %b %b %b %b %b" CR, sensor_data[0], sensor_data[1], sensor_data[2], sensor_data[3], sensor_data[4], ((sensor_data[0]+sensor_data[1]+sensor_data[2]+sensor_data[3]) & 0xff ));
  492. return 7;
  493. 212: 87 e0 ldi r24, 0x07 ; 7
  494. g_u16Humidity = (sensor_data[0] << 8) + sensor_data[1];
  495. g_u16Temperature = (sensor_data[2] << 8) + sensor_data[3];
  496. return 0;
  497. 214: 0f 90 pop r0
  498. 216: 0f 90 pop r0
  499. 218: 0f 90 pop r0
  500. 21a: 0f 90 pop r0
  501. 21c: 0f 90 pop r0
  502. 21e: df 91 pop r29
  503. 220: cf 91 pop r28
  504. 222: 1f 91 pop r17
  505. 224: 0f 91 pop r16
  506. 226: 08 95 ret
  507. 00000228 <main>:
  508. int main(void)
  509. {
  510. uint16_t u16Counter = 0U;
  511. uint8_t u8ErrorCode = 0U;
  512. vInit();
  513. 228: 21 df rcall .-446 ; 0x6c <vInit>
  514. g_u8Tens = 10; //n
  515. 22a: 8a e0 ldi r24, 0x0A ; 10
  516. 22c: 80 93 13 01 sts 0x0113, r24 ; 0x800113 <g_u8Tens>
  517. g_u8Ones = 11; //o
  518. 230: 8b e0 ldi r24, 0x0B ; 11
  519. 232: 80 93 12 01 sts 0x0112, r24 ; 0x800112 <g_u8Ones>
  520. /************************************************************************/
  521. /* main() */
  522. /************************************************************************/
  523. int main(void)
  524. {
  525. uint16_t u16Counter = 0U;
  526. 236: c0 e0 ldi r28, 0x00 ; 0
  527. 238: d0 e0 ldi r29, 0x00 ; 0
  528. //g_u8Tens = g_u16Temperature / 10U;
  529. //g_u8Ones = g_u16Temperature - (g_u8Tens * 10U);
  530. }
  531. else
  532. {
  533. g_u8Tens = 12;
  534. 23a: 1c e0 ldi r17, 0x0C ; 12
  535. 23c: 3a c0 rjmp .+116 ; 0x2b2 <main+0x8a>
  536. while ( 1 )
  537. {
  538. if ( u16Counter > 1000 )
  539. {
  540. if ( SENSOR_is_hi )
  541. 23e: 33 9b sbis 0x06, 3 ; 6
  542. 240: 02 c0 rjmp .+4 ; 0x246 <main+0x1e>
  543. {
  544. SENSOR_sda_out;
  545. 242: 3b 9a sbi 0x07, 3 ; 7
  546. SENSOR_sda_low;
  547. 244: 43 98 cbi 0x08, 3 ; 8
  548. }
  549. if ( u16Counter > 1005 )
  550. 246: ce 3e cpi r28, 0xEE ; 238
  551. 248: 83 e0 ldi r24, 0x03 ; 3
  552. 24a: d8 07 cpc r29, r24
  553. 24c: 90 f1 brcs .+100 ; 0x2b2 <main+0x8a>
  554. {
  555. //_delay_us(1200);
  556. //_delay_ms(20); // start signal (pull sda down for min 0.8ms and maximum 20ms)
  557. u8ErrorCode = u8ReadSensor();
  558. 24e: 56 df rcall .-340 ; 0xfc <u8ReadSensor>
  559. if ( 0 == u8ErrorCode )
  560. 250: 81 11 cpse r24, r1
  561. 252: 29 c0 rjmp .+82 ; 0x2a6 <main+0x7e>
  562. {
  563. g_u16Humidity /= 10;
  564. 254: e0 91 10 01 lds r30, 0x0110 ; 0x800110 <g_u16Humidity>
  565. 258: f0 91 11 01 lds r31, 0x0111 ; 0x800111 <g_u16Humidity+0x1>
  566. 25c: 9f 01 movw r18, r30
  567. 25e: ad ec ldi r26, 0xCD ; 205
  568. 260: bc ec ldi r27, 0xCC ; 204
  569. 262: 2f d0 rcall .+94 ; 0x2c2 <__umulhisi3>
  570. 264: ac 01 movw r20, r24
  571. 266: 56 95 lsr r21
  572. 268: 47 95 ror r20
  573. 26a: 56 95 lsr r21
  574. 26c: 47 95 ror r20
  575. 26e: 56 95 lsr r21
  576. 270: 47 95 ror r20
  577. 272: 50 93 11 01 sts 0x0111, r21 ; 0x800111 <g_u16Humidity+0x1>
  578. 276: 40 93 10 01 sts 0x0110, r20 ; 0x800110 <g_u16Humidity>
  579. g_u8Tens = g_u16Humidity / 10U;
  580. 27a: 36 95 lsr r19
  581. 27c: 27 95 ror r18
  582. 27e: 36 95 lsr r19
  583. 280: 27 95 ror r18
  584. 282: ab e7 ldi r26, 0x7B ; 123
  585. 284: b4 e1 ldi r27, 0x14 ; 20
  586. 286: 1d d0 rcall .+58 ; 0x2c2 <__umulhisi3>
  587. 288: 96 95 lsr r25
  588. 28a: 87 95 ror r24
  589. 28c: 80 93 13 01 sts 0x0113, r24 ; 0x800113 <g_u8Tens>
  590. g_u8Ones = g_u16Humidity - (g_u8Tens * 10U);
  591. 290: 88 0f add r24, r24
  592. 292: 98 2f mov r25, r24
  593. 294: 99 0f add r25, r25
  594. 296: 99 0f add r25, r25
  595. 298: 89 0f add r24, r25
  596. 29a: 48 1b sub r20, r24
  597. 29c: 40 93 12 01 sts 0x0112, r20 ; 0x800112 <g_u8Ones>
  598. else
  599. {
  600. g_u8Tens = 12;
  601. g_u8Ones = u8ErrorCode;
  602. }
  603. u16Counter = 0U;
  604. 2a0: c0 e0 ldi r28, 0x00 ; 0
  605. 2a2: d0 e0 ldi r29, 0x00 ; 0
  606. 2a4: 06 c0 rjmp .+12 ; 0x2b2 <main+0x8a>
  607. //g_u8Tens = g_u16Temperature / 10U;
  608. //g_u8Ones = g_u16Temperature - (g_u8Tens * 10U);
  609. }
  610. else
  611. {
  612. g_u8Tens = 12;
  613. 2a6: 10 93 13 01 sts 0x0113, r17 ; 0x800113 <g_u8Tens>
  614. g_u8Ones = u8ErrorCode;
  615. 2aa: 80 93 12 01 sts 0x0112, r24 ; 0x800112 <g_u8Ones>
  616. }
  617. u16Counter = 0U;
  618. 2ae: c0 e0 ldi r28, 0x00 ; 0
  619. 2b0: d0 e0 ldi r29, 0x00 ; 0
  620. }
  621. }
  622. u16Counter++;
  623. 2b2: 21 96 adiw r28, 0x01 ; 1
  624. //vReadButtons();
  625. //vCalculate();
  626. vShow();
  627. 2b4: eb de rcall .-554 ; 0x8c <vShow>
  628. g_u8Tens = 10; //n
  629. g_u8Ones = 11; //o
  630. while ( 1 )
  631. {
  632. if ( u16Counter > 1000 )
  633. 2b6: c9 3e cpi r28, 0xE9 ; 233
  634. 2b8: 83 e0 ldi r24, 0x03 ; 3
  635. 2ba: d8 07 cpc r29, r24
  636. 2bc: 08 f0 brcs .+2 ; 0x2c0 <main+0x98>
  637. 2be: bf cf rjmp .-130 ; 0x23e <main+0x16>
  638. 2c0: f8 cf rjmp .-16 ; 0x2b2 <main+0x8a>
  639. 000002c2 <__umulhisi3>:
  640. 2c2: a2 9f mul r26, r18
  641. 2c4: b0 01 movw r22, r0
  642. 2c6: b3 9f mul r27, r19
  643. 2c8: c0 01 movw r24, r0
  644. 2ca: a3 9f mul r26, r19
  645. 2cc: 01 d0 rcall .+2 ; 0x2d0 <__umulhisi3+0xe>
  646. 2ce: b2 9f mul r27, r18
  647. 2d0: 70 0d add r23, r0
  648. 2d2: 81 1d adc r24, r1
  649. 2d4: 11 24 eor r1, r1
  650. 2d6: 91 1d adc r25, r1
  651. 2d8: 08 95 ret
  652. 000002da <_exit>:
  653. 2da: f8 94 cli
  654. 000002dc <__stop_program>:
  655. 2dc: ff cf rjmp .-2 ; 0x2dc <__stop_program>